Troubleshooting

This section gives some guidelines about how to troubleshoot the test cases owned by Functest.

IMPORTANT: As in the previous section, the steps defined below must be executed inside the Functest Docker container and after sourcing the OpenStack credentials:

. $creds

or:

source /home/opnfv/functest/conf/env_file

VIM

This section covers the test cases related to the VIM (healthcheck, vping_ssh, vping_userdata, tempest_smoke, tempest_full, rally_sanity, rally_full).

vPing common

For both vPing test cases (vPing_ssh, and vPing_userdata), the first steps are similar:

  • Create Glance image
  • Create Network
  • Create Security Group
  • Create Instances

After these actions, the test cases differ and will be explained in their respective section.

These test cases can be run inside the container, using new Functest CLI as follows:

$ run_tests -t vping_ssh
$ run_tests -t vping_userdata

The Functest CLI is designed to route a call to the corresponding internal python scripts, located in paths:

/usr/lib/python3.7/site-packages/functest/opnfv_tests/openstack/vping/vping_ssh.py
/usr/lib/python3.7/site-packages/functest/opnfv_tests/openstack/vping/vping_userdata.py

Notes:

  1. There is one difference, between the Functest CLI based test case execution compared to the earlier used Bash shell script, which is relevant to point out in troubleshooting scenarios:

    The Functest CLI does not yet support the option to suppress clean-up of the generated OpenStack resources, following the execution of a test case.

    Explanation: After finishing the test execution, the corresponding script will remove, by default, all created resources in OpenStack (image, instances, network and security group). When troubleshooting, it is advisable sometimes to keep those resources in case the test fails and a manual testing is needed.

    It is actually still possible to invoke test execution, with suppression of OpenStack resource cleanup, however this requires invocation of a specific Python script: ‘run_tests’. The OPNFV Functest Developer Guide provides guidance on the use of that Python script in such troubleshooting cases.

Some of the common errors that can appear in this test case are:

vPing_ssh- ERROR - There has been a problem when creating the neutron network....

This means that there has been some problems with Neutron, even before creating the instances. Try to create manually a Neutron network and a Subnet to see if that works. The debug messages will also help to see when it failed (subnet and router creation). Example of Neutron commands (using 10.6.0.0/24 range for example):

neutron net-create net-test
neutron subnet-create --name subnet-test --allocation-pool start=10.6.0.2,end=10.6.0.100 \
--gateway 10.6.0.254 net-test 10.6.0.0/24
neutron router-create test_router
neutron router-interface-add <ROUTER_ID> test_subnet
neutron router-gateway-set <ROUTER_ID> <EXT_NET_NAME>

Another related error can occur while creating the Security Groups for the instances:

vPing_ssh- ERROR - Failed to create the security group...

In this case, proceed to create it manually. These are some hints:

neutron security-group-create sg-test
neutron security-group-rule-create sg-test --direction ingress --protocol icmp \
--remote-ip-prefix 0.0.0.0/0
neutron security-group-rule-create sg-test --direction ingress --ethertype IPv4 \
--protocol tcp --port-range-min 80 --port-range-max 80 --remote-ip-prefix 0.0.0.0/0
neutron security-group-rule-create sg-test --direction egress --ethertype IPv4 \
--protocol tcp --port-range-min 80 --port-range-max 80 --remote-ip-prefix 0.0.0.0/0

The next step is to create the instances. The image used is located in /home/opnfv/functest/data/cirros-0.4.0-x86_64-disk.img and a Glance image is created with the name functest-vping. If booting the instances fails (i.e. the status is not ACTIVE), you can check why it failed by doing:

nova list
nova show <INSTANCE_ID>

It might show some messages about the booting failure. To try that manually:

nova boot --flavor m1.small --image functest-vping --nic net-id=<NET_ID> nova-test

This will spawn a VM using the network created previously manually. In all the OPNFV tested scenarios from CI, it never has been a problem with the previous actions. Further possible problems are explained in the following sections.

vPing_SSH

This test case creates a floating IP on the external network and assigns it to the second instance opnfv-vping-2. The purpose of this is to establish a SSH connection to that instance and SCP a script that will ping the first instance. This script is located in the repository under /usr/lib/python3.7/site-packages/functest/opnfv_tests/openstack/vping/ping.sh and takes an IP as a parameter. When the SCP is completed, the test will do a SSH call to that script inside the second instance. Some problems can happen here:

vPing_ssh- ERROR - Cannot establish connection to IP xxx.xxx.xxx.xxx. Aborting

If this is displayed, stop the test or wait for it to finish, if you have used the special method of test invocation with specific supression of OpenStack resource clean-up, as explained earler. It means that the Container can not reach the Public/External IP assigned to the instance opnfv-vping-2. There are many possible reasons, and they really depend on the chosen scenario. For most of the ODL-L3 and ONOS scenarios this has been noticed and it is a known limitation.

First, make sure that the instance opnfv-vping-2 succeeded to get an IP from the DHCP agent. It can be checked by doing:

nova console-log opnfv-vping-2

If the message Sending discover and No lease, failing is shown, it probably means that the Neutron dhcp-agent failed to assign an IP or even that it was not responding. At this point it does not make sense to try to ping the floating IP.

If the instance got an IP properly, try to ping manually the VM from the container:

nova list
<grab the public IP>
ping <public IP>

If the ping does not return anything, try to ping from the Host where the Docker container is running. If that solves the problem, check the iptable rules because there might be some rules rejecting ICMP or TCP traffic coming/going from/to the container.

At this point, if the ping does not work either, try to reproduce the test manually with the steps described above in the vPing common section with the addition:

neutron floatingip-create <EXT_NET_NAME>
nova floating-ip-associate nova-test <FLOATING_IP>

Further troubleshooting is out of scope of this document, as it might be due to problems with the SDN controller. Contact the installer team members or send an email to the corresponding OPNFV mailing list for more information.

vPing_userdata

This test case does not create any floating IP neither establishes an SSH connection. Instead, it uses nova-metadata service when creating an instance to pass the same script as before (ping.sh) but as 1-line text. This script will be executed automatically when the second instance opnfv-vping-2 is booted.

The only known problem here for this test to fail is mainly the lack of support of cloud-init (nova-metadata service). Check the console of the instance:

nova console-log opnfv-vping-2

If this text or similar is shown:

checking http://169.254.169.254/2009-04-04/instance-id
failed 1/20: up 1.13. request failed
failed 2/20: up 13.18. request failed
failed 3/20: up 25.20. request failed
failed 4/20: up 37.23. request failed
failed 5/20: up 49.25. request failed
failed 6/20: up 61.27. request failed
failed 7/20: up 73.29. request failed
failed 8/20: up 85.32. request failed
failed 9/20: up 97.34. request failed
failed 10/20: up 109.36. request failed
failed 11/20: up 121.38. request failed
failed 12/20: up 133.40. request failed
failed 13/20: up 145.43. request failed
failed 14/20: up 157.45. request failed
failed 15/20: up 169.48. request failed
failed 16/20: up 181.50. request failed
failed 17/20: up 193.52. request failed
failed 18/20: up 205.54. request failed
failed 19/20: up 217.56. request failed
failed 20/20: up 229.58. request failed
failed to read iid from metadata. tried 20

it means that the instance failed to read from the metadata service. Contact the Functest or installer teams for more information.

Tempest

In the upstream OpenStack CI all the Tempest test cases are supposed to pass. If some test cases fail in an OPNFV deployment, the reason is very probably one of the following

Error Details
Resources required for testcase execution are missing Such resources could be e.g. an external network and access to the management subnet (adminURL) from the Functest docker container.
OpenStack components or services are missing or not configured properly Check running services in the controller and compute nodes (e.g. with “systemctl” or “service” commands). Configuration parameters can be verified from the related .conf files located under ‘/etc/<component>’ directories.
Some resources required for execution test cases are missing The tempest.conf file, automatically generated by Rally in Functest, does not contain all the needed parameters or some parameters are not set properly. The tempest.conf file is located in directory ‘root/.rally/verification/verifier-<UUID> /for-deployment-<UUID>’ in the Functest Docker container. Use the “rally deployment list” command in order to check the UUID of the current deployment.

When some Tempest test case fails, captured traceback and possibly also the related REST API requests/responses are output to the console. More detailed debug information can be found from tempest.log file stored into related Rally deployment folder.

Functest offers a possibility to test a customized list of Tempest test cases. To enable that, add a new entry in docker/smoke/testcases.yaml on the “smoke” container with the following content:

-
    case_name: tempest_custom
    project_name: functest
    criteria: 100
    blocking: false
    description: >-
        The test case allows running a customized list of tempest
        test cases
    dependencies:
        installer: ''
        scenario: ''
    run:
        module: 'functest.opnfv_tests.openstack.tempest.tempest'
        class: 'TempestCustom'

Also, a list of the Tempest test cases must be provided to the container or modify the existing one in /usr/lib/python3.7/site-packages/functest/opnfv_tests/openstack/tempest/custom_tests/test_list.txt

Example of custom list of tests ‘my-custom-tempest-tests.txt’:

tempest.scenario.test_server_basic_ops.TestServerBasicOps.test_server_basic_ops[compute,id-7fff3fb3-91d8-4fd0-bd7d-0204f1f180ba,network,smoke]
tempest.scenario.test_network_basic_ops.TestNetworkBasicOps.test_network_basic_ops[compute,id-f323b3ba-82f8-4db7-8ea6-6a895869ec49,network,smoke]

This is an example of running a customized list of Tempest tests in Functest:

sudo docker run --env-file env \
    -v $(pwd)/openstack.creds:/home/opnfv/functest/conf/env_file \
    -v $(pwd)/images:/home/opnfv/functest/images \
    -v $(pwd)/my-custom-testcases.yaml:/usr/lib/python3.7/site-packages/functest/ci/testcases.yaml \
    -v $(pwd)/my-custom-tempest-tests.txt:/usr/lib/python3.7/site-packages/functest/opnfv_tests/openstack/tempest/custom_tests/test_list.txt \
    opnfv/functest-smoke run_tests -t tempest_custom

Rally

The same error causes which were mentioned above for Tempest test cases, may also lead to errors in Rally as well.

Possible scenarios are:
  • authenticate
  • glance
  • cinder
  • heat
  • keystone
  • neutron
  • nova
  • quotas
  • vm

To know more about what those scenarios are doing, they are defined in directory: /usr/lib/python3.7/site-packages/functest/opnfv_tests/openstack/rally/scenario For more info about Rally scenario definition please refer to the Rally official documentation. [3]

To check any possible problems with Rally, the logs are stored under /home/opnfv/functest/results/rally/ in the Functest Docker container.

Controllers

Opendaylight

If the Basic Restconf test suite fails, check that the ODL controller is reachable and its Restconf module has been installed.

If the Neutron Reachability test fails, verify that the modules implementing Neutron requirements have been properly installed.

If any of the other test cases fails, check that Neutron and ODL have been correctly configured to work together. Check Neutron configuration files, accounts, IP addresses etc.).

Features

Please refer to the dedicated feature user guides for details.

VNF

cloudify_ims

vIMS deployment may fail for several reasons, the most frequent ones are described in the following table:

Error Comments
Keystone admin API not reachable Impossible to create vIMS user and tenant
Impossible to retrieve admin role id Impossible to create vIMS user and tenant
Error when uploading image from OpenStack to glance impossible to deploy VNF
Cinder quota cannot be updated Default quotas not sufficient, they are adapted in the script
Impossible to create a volume VNF cannot be deployed
SSH connection issue between the Test Docker container and the VM if vPing test fails, vIMS test will fail…
No Internet access from the VM the VMs of the VNF must have an external access to Internet
No access to OpenStack API from the VM Orchestrator can be installed but the vIMS VNF installation fails

Please note that this test case requires resources (8 VM (2Go) + 1 VM (4Go)), it is there fore not recommended to run it on a light configuration.